GWAS——复杂疾病相关的遗传因素的研究方法及实操

发布一下 0 0

尔云间 一个专门做科研的团队

原创 小果 生信果


GWAS——复杂疾病相关的遗传因素的研究方法及实操

前言:与复杂疾病相关的遗传因素的研究方法

基于当前流行病学研究的进展及研究热点,小果在这里为大家简单介绍一下关于全基因组关联研究(Genome-wide association study,GWAS)(以下简称GWAS)。全基因组关联研究发展已有二十多年了,研究人员们发现了大量和人类疾病以及其它表型相关联的基因,GWAS是现代遗传学的重要组成部分,推动了孟德尔随机化和多基因风险评分的发展与应用。


基本概念

GWAS是对多个个体在全基因组范围的遗传变异(标记)多态性进行检测,获得基因型,进而将基因型与可观测的性状,即表型,进行群体水平的统计学分析,根据统计量或显著性 p 值筛选出最有可能影响该性状的遗传变异(标记),挖掘与性状变异相关的基因。

相对于连锁分析的优势

关联定位的相对优势:
• 分辨率高(单碱基水平)
• 研究材料来源广泛,可捕获的变异丰富
• 节省时间


材料选择与群体设计

材料选择的基本原则

1)遗传变异和表型变异丰富
2)群体结构分化不能过于明显(如亚种以上,发生生殖隔离是不能做GWAS的)

样本量
非稀有变异中,对中等变异解释率(10%左右)的位点的检测功效要达到80%以上时,需要的样本量在400左右。
位点的效应越低,需要的样本量越大。

关联分析的三要素

• 测定某一群体的表型数据

• 测量该群体的基因型数据

• 进行关联计算


实操

作为生信分析里最基础的技能之一,有人花了很大的时间和精力都不能够完成一次GWAS。

GWAS——复杂疾病相关的遗传因素的研究方法及实操

小果在这里用最简单的数据和代码跑一遍GWAS,希望能够帮助大家更好的理解GWAS。

数据:测试一组狗全基因组的遗传变异与分类形状(毛皮颜色)之间的关系。


操作系统:Linux


1 下载样品vcf文件和表型数据

Wget https://de.cyverse.org/dl/d/E0A502CC-F806-4857-9C3A-BAEAA0CCC694/pruned_coatColor_maf_geno.vcf.gzwget https://de.cyverse.org/dl/d/3B5C1853-C092-488C-8C2F-CE6E8526E96B/coatColor.phen


2 解压VCF文件之后 查看数据

gunzip pruned_coatColor_maf_geno.vcf.gz

#表型数据 前两列也是FID and IID,第三列是表型。

##查看文件发现,这个数据涉及53只小狗的476840个SNP,表型:24只黄毛犬 29只深色毛犬。


3 安装pink和vcftools

###安装plinkwget http://zzz.bwh.harvard.edu/plink/dist/plink-1.07-x86_64.ziprm -f plink_linux_x86_64.zipcd plink-1.07-x86_64/echo export PATH=$PATH:$(pwd) >> ~/.bashrcsource ~/.bashrc###安装vcftoolsgit clone https://github.com/vcftools/vcftools.gitcd vcftools./autogen.sh./configuremakesudo make install

当然也可以直接用conda 装


4 将vcf文件转换成map、ped格式,然后转换为Plink二进制格式(fam,bed,bim)

vcftools --vcf pruned_coatColor_maf_geno.vcf --plink --out coatColor plink --file coatColor --allow-no-sex --dog --make-bed --noweb --out coatColor.binary
GWAS——复杂疾病相关的遗传因素的研究方法及实操


5 候选等位基因列表创建,awk编辑文本

cat pruned_coatColor_maf_geno.vcf | awk 'BEGIN{FS="\t";OFS="\t";}/#/{next;}{{if($3==".")$3=$1":"$2;}print $3,$5;}'  > alt_alleles


6 关联分析

plink --bfile coatColor.binary --make-pheno coatColor.phen "yellow" --assoc --reference-allele alt_alleles --allow-no-sex --adjust --dog --noweb --out coatColor


7 画图

#数据处理unad_cutoff_sug=$(tail -n+2 coatColor.assoc.adjusted | awk '$10>=0.05' | head -n1 | awk '{print $3}')unad_cutoff_conf=$(tail -n+2 coatColor.assoc.adjusted | awk '$10>=0.01' | head -n1 | awk '{print $3}')#R绘图data=read.table("coatColor.assoc", header=TRUE); data=data[!is.na(data$P),]bitmap("coatColor_man.bmp", width=20, height=10)library(qqman)png(“man.pdf”)manhattan(data, p = "P", col = c("blue4", "orange3"),suggestiveline = 12,genomewideline = 15,chrlabs = c(1:38, "X"), annotateTop=TRUE, cex = 1.2);dev.off();


最后的结果图和生成文件,是不是很简单呢?关注小果,下期将为大家带来更多使用生信技巧。

GWAS——复杂疾病相关的遗传因素的研究方法及实操

GWAS——复杂疾病相关的遗传因素的研究方法及实操

最后小果祝大家学业有成,事事顺心。

GWAS——复杂疾病相关的遗传因素的研究方法及实操

推荐阅读

GO的概念及用R做简单的富集分析

R语言ConsensusClusterPlus包无监督聚类

柱状图-肿瘤某一指标的比较和GSVA结果展示

看小果演示CIBETSORT、xcell两种常用的R语言包

小果教你三分钟看懂多条线共存的ROC图的R语言画法

版权声明:内容来源于互联网和用户投稿 如有侵权请联系删除

本文地址:http://0561fc.cn/201865.html